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FOR \WORD

This is the sixth quarterly progress report submitted in response to Data

Requirement 55-M-006 of Contract R20SPA550031. It is a progress status

report of work performed by Honeywell as a subcontractor to Rocketdyne

Division of Rockwell International Corporation. Honeywell is responsible

for the Phase C-D design and development of the Space Shuttle Main Engine

(SSME) Controller Assembly. This report covers the period 27 May through

9 September 1973.
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SECTION I

SUMMARY

The program schedule status has improved in some areas, worsened in

others, and continues to receive full attention. The program baseline is

shown in Figure 1 and a summary of the actual status is shown in Figure 2.

More comprehensive schedule information is given in the Logic Networks

and Key Milestone Charts submitted under Rocketdyne Data Requirements

55-M-007.

System design and system analysis and simulation continue slightly behind

schedule, while design verification testing has improved. Input/output

circuit design has improved, but digital computer unit (DCU) and mechanical

design continue to lag. Part procurement has been impacted by delays in

printed-circuit board assembly drawing releases. These are the result of

problems in generating suitable printed-circuit artwork for the very complex

and high-density multilayer boards.

Previously reported schedule recovery efforts have proved effective and

functional and integration testing of engineering model EM-1 is projected

for completion by the 1 October 1973 target date. The schedule position of

BT-1 has also improved, but projected late DCU deliveries present a poten-

tial problem. The schedule position of PP-1 is jeopardized by this and by

the late design releases, and a vigorous schedule recovery effort is being

applied here also.

The ability of the controller to operate continuously in the most severe oper-

ating modes was demonstrated by simulation runs on a thermal math model

of the complete assembly. The model is being updated and new runs will be

performed to predict the improvements derived from new power profiles.

W2 101-QPR-3-73



SPACE SHUTTLE MAIN ENGINE CONTROLLER ASSEMBLY
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Figure 1. SSME Controller Assembly Master Milestone Schedule
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Figure 2. SSME Controller Assembly Program Schedule



-4-

Detailed models of selected subassemblies are also being prepared to

determine component temperatures.

Thermal screening tests were completed on multilayer printed-wiring boards.

Small cracks detected in the solder joints for transistor leads indicated the

need for improvements in parts mounting, process, and workmanship

techniques. A plan of action has been established to effect the required

changes prior to formal Design Verification Specification (DVS) testing.

All hardware and elements of engineering model EM-1 with the exception of

power supplies have been integrated and functional testing is in process. On

1 October 1973, integration with the real-time simulation will begin.

Nineteen Design Verification Test Procedures were submitted, and work was

completed on 14 out of 19 design verification tests in process during the

period. Twelve test reports were completed and submitted.

Design documentation forEM-i was completed and release of PP-1 documen-

tation was begun. The printed-wiring board component density and the number

of board layers are greater than anticipated. The resulting problems in pro-

gramming and mechanizing these more complex subassemblies in the auto-

mated graphics systems has resulted in delays in board documentation, and

schedule recovery action is being implemented. Printed-wiring board

vendors have been extending delivery promises and procurement action is

being taken to improve delivery.

Parts for the structural thermal model (STM) have been fabricated and

assembly has started.

Memory plated-wire equipment was certified to produce wire that meets the

temperature operating range of Shuttle environments. Memory planes were

produced and keeper plating accomplished with excellent yield results on the

W2101-QPR-3-73
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initial lot. Six out of six planes were accepted through plating as con-

trasted to less than 50 percent yield of planes through keeper plating on

past programs.

The GSE Preliminary Design Review (PDR) was completed.

Build of the in-house command and data simulator (C&DS) was completed

and checkout and debug is being performed on the hardware and the execu-

tive software.

The first computer checkout console (CCC) was completed and is being used

to support EM-1. Unit 2 to be used and shipped for BT-1 is in checkout,

and unit 3 is in build.

W2101 -QPR-3-73



PRECEDING PAGE BLANK NOT FILMEID

-7-

SECTION II

ANALYSIS AND DESIGN

SCHEDULE

The schedule position of the Analysis and Design activities ranges from on-

schedule to 8 weeks behind. The most critical items are production prototype-

printed wiring board drawing releases with a negative slack of 7 weeks for

the Input/Output Assembly boards and 6 weeks for the DCU. The delays are

primarily a result of problems in initial programming and mechanization of

the automated graphics systems needed to produce the high-density multi-

layer space shuttle boards. An intensive effort is under way to accelerate

releases and to recover some of the negative slack.

The power supply design is also 8 weeks behind schedule due to modifications

being performed to improve the efficiency and voltage regulation. Nominally

this represents an 8-week impact on Engineering Model EM-1, but this has

been circumvented through the use of substitute commercial power supplies

until the Space Shuttle design is available.

W2101-QPR-3-73
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TECHNICAL PROBLEMS

Thermal Design

Simulation runs were performed on an updated thermal math model as noted

in the prior quarterly report and were published in Thermal Study Report

W2101-TSR, dated 18 June 1973. The updated model reflected revised and

less severe environmental temperature conditions and improvements in the

controller thermal design.

Three runs were made at different power dissipation conditions within the

controller. The runs predicted that the controller may be operated con-

tinuously in either the ground checkout standby mode or the modular check-

out mode, provided compartment air and well temperatures do not exceed

950F and the engine temperatures do not exceed 100 0 F. The predicted

internal temperature rise on circuit cards was reduced by the increased

card-to-partition conductance achieved through foil-wrapped foam grids in

the foam pack assemblies. The runs also predicted up to 7 0 F over tempera-

ture at the power supply rectifier-filter diode junctions during the propellant

drop and chilldown portion of the start-preparation operating mode. The

power supply design will be directed toward correcting this condition.

Subsequent to issuance of the Thermal Study Report, the controller power

dissipation and power dissipation time lines were updated to reflect new data

provided by Rocketdyne in SPSCN-20 to RC1007, Rev. D.

The math model was again updated to reflect the new data and simulation

runs will be performed to determine the impact of these parameter changes

on the controller temperatures. The runs will cover the following conditions:

* Steady-state standby mode @ 95 0 F ambient and 100'F engine

W2101-QPR-3-73
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e Start preparation, sequences 1 through 4

o Steady-state flight-readiness test in sequence 4 mode @ 95 0 F

ambient and 100 0 F engine

Significant reductions in controller internal temperatures are anticipated.

Detailed math models are also being created for the power supply/driver

assembly and selected circuit boards. Simulation runs will be performed in

September to investigate component temperatures.

System Power

The power-reporting basis was changed during the reporting period to more

closely relate to the critical power dissipation conditions in the thermal

analysis. This new basis includes allowances for leak detector circuits,

spare on/off solenoid valves, and component variations. The basis also

reflects the condition of maximum controller assembly internal power dissi-

pation which, except for a few seconds during engine start, occurs in the

start preparation phase. The start preparation phase is most critical to con-

troller operation because it may continue for an indefinite period.

In Figure 3, the predicted input power of 693 watts is compared with the 700-

watt limit proposed in Rocketdyne letter ROM-CA3-305. The predicted con-

troller internal power dissipation is also given. The proposed engine elec-

trical power profile is shown in Figure 4.

W2101-QPR-3-73
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Printed Wiring Board Screening Tests

Multilayer Printed Wiring Board (PWB) thermal screening tests were com-

pleted by the Aerospace Division. These tests were performed to evaluate

PWB Board integrity, solder joints on typical components, and memory

plane integrity, and were conducted on typical Aero and G&APD populated

boards. Test report DVSTR No. 002 dated 30 August 1973 was transmitted

by Aero to G&APD. An addendum dated 31 August 1973 was prepared by

G&APD and the complete test report package was presented to NASA/Rocket-

dyne at Florida on 5 September 1973.

The test results revealed heat cracks on some of the solder points where

the transistor leads entered the joint. Based upon an analysis of the solder

joints and component mountings, and upon a critique by the NASA soldering

committee, a plan of action was established to prove the design and to test

alternative solutions. The plan includes test boards as similar as possible

to the final design, built and inspected to defined documentation. The plan

also encompasses improved stress relief in component leads, workmanship

standards, operator training, wave soldering techniques, parts mounting and

handling techniques, and thermal overlay effects. A total of eight board

assemblies representing four different configurations will be tested, with

a goal of completing the tests by the start of PP-I build.

Weight

Weight reporting on the controller has been changed to a monthly basis via

Customer Engineering Letter (CEL 3-SSEC-236). The current weight has

increased to 197. 2 pounds as a result of structural and thermal improvement

and power supply design maturity.

W2101-QPR- 3-73
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SYSTEM DESIGN

Significant milestones reached during this period were the initiation and com-

pletion of a significant portion of the system functional and integration testing

on EM-1. Testing has progressed according to plan, and the 1 October 1973

completion date for functional testing should be met in spite of a late start.

Initial system testing on EM-1 was started 9 August 1973 using a simple

functional channel of electronics consisting of the following:

* A single DCU and associated computer interface electronics

* A single channel of output electronics

* Three channels of input electronics

As of 7 September, the redundant channels were all added, so that the EM-1

unit is complete with the exception of power supplies. Laboratory power

supplies are being used in the interim until the EM-1 supply is available.

Testing to date has included a satisfactory functional check of all controller

hardware, with the exception of the channel B output electronics. That test

will be completed by 12 September. The hardware functional testing has

been done with simple program elements to facilitate testing. As hardware

testing is completed on 12 September, the initial version of the Controller

Acceptance Test Program will be loaded and software testing initiated.

Current Controller Configuration

The system mechanization is basically unchanged from that previously reported.

A revision of the input electronics write control logic was made, however, to

remove a potential single point failure source.

W2101-QPR-3-73
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System Design Studies

Considerable attention was given during this period to studies of failure simu-

lations and to means of alleviating concerns resulting from these studies.

Failure simulation studies regarding the actuation system determined that

allowable response times to detection and correction of failures are marginal

and that actuator position monitoring requirements are very stringent. Methods

of achieving a satisfactory failure response time were devised for all propel-

lant control values except the OPV. Because of an unsuitably high engine sen-

sitivity to actuator position, it appears that the response time of the fail

operate torque motor valves alone exceeds that necessary to adequately

respond to OPV failures. Any solution devised by Rocketdyne for the high

engine sensitivity should help this condition, however. Honeywell plans to

propose changes to the RC1010 requirements in the near future to effect the

failsafe performance improvements mentioned above. These proposed changes

will also cover software revisions which will remove a potential single point

failure resulting from a failed failsafe valve having shorted turns.

A review of the self-test mechanization was made to determine if areas exist

where the software timing requirements might be eased. Two improvements

were devised which save a total of about 0.3 to 0.4 millesecond. This includes

deletion of power supply monitoring inflight (it is retained for ground checkout)

and a revision of the power-off timer test routine. Details of these changes

were provided to Rocketdyne via CEL.

System Specifications

A number of additional SPSCNs were received from Rocketdyne during this

period. Current controller requirements are defined in the following specifi-

cations and SPSCN's:

W2101-QPR-3-73
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0 RC1007 Rev D plus SPSCNs 013,015,003,006,010,004,008,011,

016, 017, 019, 023, 009R, 032, 033, 002, 012

* RC1009 Rev. E plus SPSCNs 001,002,003,005,006

* RC1010 Rev D plus SPSCNs 002,010, 011,001,005

* RC00001 Rev E plus Amendment 3

Honeywell system requirements specifications presently in effect are:

* HRS 24402-01 Rev. B

* HRS 24403-01 Rev. C

* DS 24405-01 Rev. F

W2101-QPR-3-73
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Control System Analysis and Simulation

Servoactuator Failure Mode Study --

Summary -- The effects of servoactuator failures at their valves and

positional pick-offs were observed using the 231R/Sigma-5 engine/controller

simulation. Study results allowed two generalized conclusions to be made:

1) The analog monitor, which is concerned with failures at

the servoamplifiers, servovalves, servovalve models,

LVDTs, etc., adequately detects and corrects for failures

in its domain under most conditions.

2) The actuator tracking technique of RC1010, which is concerned

with failures at the servoactuators, RVDTs with their associated

electronics, etc., is unsatisfactory for detecting and correcting

failures at the servoactuator outputs.

Conclusions and Recommendations -- These conclusions and recommen-

dations for improvement will require both hardware and software changes:

1) Failures in the servoactuator system which positions the OPV

are critical and can be remedied only by Engine System Changes.

Failures to servoactuator systems that position the other four

propellant valves (FPV, MFV, MOV, CCV) can be handled ade-

quately if the recommended changes given here are adopted.

W2101-QPR-3-73



- 17-

2) A reduction in the error action level (EAL) of the analog monitor,

currently set at 50 percent of servovalve spool displacement, is

desirable if design is not compromised, but is not necessary.

However, a reduction is recommended if the actuator tracking

EAL is reduced to less than 5 percent. The importance of these

two EALs whose ratio must not exceed 10, is that it assures

that failures associated with the servovalve will be detected and

corrected by the analog monitor rather than the actuator tracking

software downstream, a potentially serious situation.

3) Rewrite Paragraph 3. 2. 1. 1. 7. 1 of RC1010 so that each indicated

servoactuator position error is treated and acted upon individually.

If an active channel failure is confirmed, command switchover to

the standby channel. If a standby channel failure is confirmed,

update the appropriate flag in the data tables so that a failure in

the active channel will command failsafe mode. On switchover

from a confirmed active channel failure to the standby channel,

delay actuator tracking sampling of it for two nominal computa-

tion cycles so that the actuator, having possibly been driven well

away from its trim position by the failure, can return and reduce

the tracking error to less than the 5 percent EAL, thereby avoiding

a single-point failure situation.

4) Excessive servoactuator rate capability and high control effec-

tiveness of the preburner propellant valves (OPV and FPV),

especially at or near minimum power levels (MPL), contribute

to failsafety problems. These are beyond the design responsi-

bility of Honeywell and may well be justified as is. However,

either some relief must be obtained here or the problems at

MPL must be dismissed as not important based on projected

engine duty cycles.

W2101-QPR-3-73
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Discussion -- Failures can occur in two general areas of the servo.-

actuator loops: those associated with the servovalves and their electronics,

and those at the servoactuator outputs. Failure monitoring is two-stage:

an analog monitor concerned with failures near the servovalves, and actuator

tracking using software methods.

While there is no requirement that each monitoring stage detect and correct

for failures within its immediate domain, such a requirement appears desir-

able from failsafety considerations. Further discussion of this point is made

later in this section.

Five specific failure types were used in the study. At the servovalves, step

valve displacement hangups both less and greater than the EAL of 50-percent

spool displacement were used. These were applied in both directions so that

positioning of the servoactuator tended to open and close the propellant valves.

At the actuator outputs, RVDTs and their associated electronics were failed

in three ways: minimum, maximum, and 50-percent outputs.

If item 3 of the Conclusions and Recommendations section is adopted, failures

in the servoactuator loops for the FPV, MFV, MOV and CCV propellant valves

can be safely handled. It will take something like the modification in Item 4 to

safely handle failures in the OPV actuator loop.

OPV actuator loop failures cause two kinds of problems. A failure which tends

to close the OPV at MPL depresses the main chamber pressure to seriously

low levels. Nominally at 50 percent this critical engine parameter can trigger

engine shutdown if it reaches 40 percent. Similarly, at EPL where the main

chamber pressure is nominally 109 percent, a failure tending to open the OPV

can drive this pressure up to 114 percent and cause shutdown. Perhaps these

failures can be tolerated if the shutdown limits are expanded. But a more
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serious problem occurs when a failure tends to open the OPV while at MPL.

Oxidizer propellant is ported into the preburner chamber where a fuel-rich

mixture exists. Before the failure is detected, verified, and switched out,

the preburner temperature is beyond its limit. One of two things can happen:

either a shutdown occurs (the temperature is a critical engine-limit parameter),

or temperature override is selected (under conditions not intended for it) in the

controller and both preburner valves are closed, the temperature error clos-

ing the OPV and the crossfeed term closing the FPV. Of course, until the

faulty channel is removed, neither of these can occur. In the meantime the

computer continues to compute engine thrust and mixture ratio but the validity

of these calculations is questionable. The best that can happen here is a

shutdown, since the possibility of a flight hazard exists.

A satisfactory solution to handling OPV actuator loop failures may cause

other problems. Lowering the actuator tracking EAL looks promising until

the matter of an increased ratio of EALs is examined closely. Suppose the

actuator tracking EAL is lowered to 2. 5 percent, raising the ratio to 20,

twice the recommended value. If a failure at the servovalve now occurs, of

a kind that is not immediately detected by the analog monitor, the actuator

tracking software will have to respond. But the failure will cause both RVDTs

to display identical values. When the computed actuator position is compared

with these, both look like failures and a single-point failure situation is

apparent.

The objective here is to reducq the amount of time it takes for a failed channel

to be detected, verified, and switched out. This can be demonstrated by re-

moving all solenoid and sampling delays. Of course, this is no solution, but

it appears that an attempt to minimize the .time to get rid of a failed channel

is not going to solve the problem.
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An alternative suggests itself here. As long as there is little that can be done

to speed up switching out a failed channel, try instead to minimize the distur-

bance the failure causes. This can be done by reducing the rate capability of

the servoactuators.

Table 1 contains the maximum servoactuator rates required to handle legiti-

mate controller commands. But the major propellart valve actuators (MFV

and MOV) are specified at maximum rates of 370 percent per second and the

minor propellant valve actuators (FPV, OPV, CCV) and 305 percent per sec-

ond (see Table 1, RC1008).

Table 1. Maximum Controller-Commanded

Actuator Rates

A ctuator Peak Actuator Rates Commanded

Mainstage Startup and Shutdown

FPV 40 150

OPV 40 150

CCV 100 100

MFV 60 150

MOV 55 100

This excessive rate capability adds to the severity of the engine disturbance

during failures, and reduced rate capability for at least the preburner valve

actuators should be recommended. There may be good reasons for not re-

ducing rates via mechanical or hydraulic changes to the servoactuators, but

the job could be done electronically by limiting the servoamplifier outputs so

that any command, legitimate or illegitimate (failures), could not command

rates exceeding 150 percent per second. Such limiting would restrict the

violence of all RVDT failures plus those failures near h&servovalves except

mechanical failures to the servovalves themselves. This last unchecked
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failure is undesirable but nothing short of reduced OPV effectiveness will

eliminate it.

The fact that the most severe failure problems occur at low engine thrust

levels hints at a way to rationalize them away. Engine duty cycles for typical

missions would probably show the engine at low thrust levels for a low percen-

tage of the time. MPL then becomes a very brief transitory condition on the

way to either startup or shutdown.

Results -- The time histories contained in Figures 5 through 9 are

separated into two sets. Each strip in a set has a number which identifies

the particular failure type. These failure types are:

1) Servovalve step hangup, less than the EAL of the analog

monitor, positions actuator so that propellant valve tends

to open

2) Same as 1 except that propellant valve tends to close

3) RVDT output goes to maximum value

4) RVDT output goes to minimum value

The eight parameters in the set at the left, starting at the top of the Figures

are:

1 and 2 - The differential errors (DE) the analog monitor sees in

Channels A and B. This is the differential sum of the

servovalve and its model. When the sum equals or exceeds

the monitor EAL, currently set at 50 percent of spool travel,
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for at least two milliseconds, the analog monitor sends

an interrupt to the computer.

3 and 4 - The differential errors the computer generates by

comparing the computed actuator position with each

RVDT displayed position. When either of these equals

or exceeds the tracking EAL, currently set 5 percent

equivalent actuator displacement, the computer enters

200-Hz cycling to test the indicated failure.

5 and 6 - Discretes that indicate completion of switchout of faulty A

channel, or recognizing (or switchout of) faulty B channel.

7 - A discrete that indicates the completion of switchout of a

second failure and putting engine into pneumatic shutdown.

8 - Engine thrust.

The parameters in the set at the right, starting at the top of the Figures,

are:

1) Preburner temperature, "fuel-side" of engine

2) Preburner temperature, "oxidizer-side" of engine

3) Shaft speed, high-pressure fuel turbopump

4) Shaft speed, high-pressure oxidizer turbopump

5) Main combustion chamber pressure

6) System thrust error

7) System mixture ration error

8) Engine torust

W2101-QPR-3-73
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The first five items in the second set are engine-limit-control shutdown

parameters. It is not known what limit level these parameters will be com-

pared with (see Table VI, RC1007 for range of values), but servoactuator

failures cause transient disturbances to these parameters. Whatever the

limit settings, failsafety mode operation must be quick enough to avoid ex-

cessive transients in them.

The timer for the time histories is at the lower edge of the strips. Each

tick is 20 milliseconds.

The selection of propellant valve axes and engine power levels for the servo-

actuator failures given in Figures 5 through 9 was dictated by two considerations.

These were, first, to choose conditions where failures are most likely to cause

problems and, second, to illustrate graphically how the servoactuator failsafety

system operates. Using the first of these eliminated the main fuel (MFV) and

coolant control (CCV) propellant valves at all engine thrust levels and the main

oxidizer valve (MOV) at high engine thrust. The failsafety system operated

well in removing failures in these circumstances while keeping engine transients

to minor or insignificant levels.

A review of Figures 5 through 9 demonstrates that while engine transients are

significant, failures in the FPV and MOV axes are corrected satisfactorily.

It is in Figures 5 and 6, which deal with failures in the OPV axis, that fail-

safety problems persist. Figure 5, with the engine at 100 percent of thrust,

seems to indicate that failures are adequately handled, but this is a bit decep-

tive. Failures numbered 5 and 8, which tend to open the OPV, generate tran-

sients which put some of the critical engine shutdown parameters close to

triggering levels. With the engine at EPL (109 percent, not included in the

Figures), a shutdown is even more likely. In a similar way, failures 2 and

4, which tend to close the OPV, reduce main chamber pressure (Pc) close to

shutdown level (see Figure 6). It is not known at what levels the engine-limit

shutdown parameters will be set, but Table IV, RC1007, contains a range
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of values for each. The limit levels shown on the extreme right borders of

Figures 5 and 6 are as follows: TFP is 22500 R, TOP is 2400 0R, SF2 is 4000

rpm, SO02 is 35000 rpm, and Pc is 40 percent and 112 percent.

A more difficult problem of handling a failure is illustrated in Figure 6. At

low engine thrust levels, failures that then open the OPV (1 and 4) cannot

be switched out quickly enough to avoid a shutdown, either through an apparent

single-point failure or triggering an engine-limit parameter. The response

labeled 1A demonstrates what quickness can do. It is the repeat of the re-

sponse labeled 1, except that the 12-millisecond solenoid switching time was

removed. This small saving of time, (which, of course, is no solution to the

problem), is sufficient to permit both switchout of the failed channel and con-

trol recovery from the disturbance.

The RVDT failure labeled 4 (see Figure 6) does not generate differential

errors in the analog monitor so the actuator tracking software will respond.

The accumulated delays here are much more severe, i. e., no priority

interrupt, failure verification is required, and the solenoid switchout time.

This particular failure is so rapid and disruptive that a basic change in the

sensitivity of the OPV must be considered. Such a change is beyond Honeywell

design responsibility.

The importance of the ratio of EALs has been emphasized previously. Failures

labeled 1 and 2 in all the Figures can be used to make this point. For example,

in Figure 5 it is clear that the analog monitor is responsible for the detection

and switchout of the failure. (Note that the monitor DE reaches its EAL of 50

percent spool travel before either of the tracking DEs reach their EAL of 5

percent actuator displacement. ) But this type of failure affects the actuator

output also, and both A and B actuator tracking differential errors reach

approximately 2. 5 percent, or half, of their EAL. Suppose that it is possible

to lower the tracking EAL to 2. 5 percent, a beneficial change. If this is done,

then failure types like 1 and 2 could slip by the analog monitor (that is, the
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tracking EA L will be reached before the analog monitor EA L) and be inter-

preted by the system as a single-point failure. To avoid this, any reduction

in the actuator tracking EAL must be accomplished by a reduction in the

analog monitor EAL. (The converse of this is not true. ) The conclusion

to be drawn here is that the ratio of EALs must be maintained at a value not

to exceed the current value of 10.

Servo Actuator Analog Study --

Summary -- A brief analog study was performed on the servo actuators

used to position the SSME propellant valves. The purpose of the study was to

examine the effects of various inputs (step and ramp commands) on the servo

valve monitor and nonlinearities such as stiction and backlash.

The servo actuator performed well with no nuisance tripping of the servo

valve monitor. The effects of the system on the complete engine and controller

system is beyond the scope of the study.

Background -- Figure 10 represents the block diagram used to simulate

the servo actuator system on a PACE 231R analog computer (No. C13). The

broken line shows the modification necessary to obtain computer runs with

the nonlinearities (stiction and backlash) inside the servo/actuator loop. It is

currently believed that the nonlinearities lie outside the loop. Comparisons of

the two nonlinearity configurations, along with runs with no nonlinearities, can

be seen in both Figures 1.1 and 12.

Only the fuel preburner oxidizer valve was investigated in this study which,

from previous analysis, appears to be the most sensitive servo actuator as far

as tripping the servovalve monitor is concerned.

Results -- Figure 11 shows results of ±5-degree step commands (±6. 25%).

This input is unrealistically large because even at maximum commands

W2101-QPR-3-73
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(305%/sec) the digital ramp, or "staircase", command will be comprised of

steps no larger than 4. 88 deg. Maximum input rates of 200%/sec is more

realistic. The only significant effect of the nonlinearities is the hangoff in

Output position error 0 (due to the linkage hysteresis) amounting to 0. 3 to

0. 4 degrees. This hangoff is not seen by the servovalve monitor, but could

adversely affect the system performance. The peak voltage error at the com-

parator VE is only 2 volts and 6. 25 volts are required to trip the monitor (for

2 ms).

Figure 12 shows more comparisons of runs with no nonlinearities, inside

and outside the servo loop. The same conclusions can be made as in Figure

11 concerning hangoff position error (0 ) and the servovalve comparator volt-

age error (V). Also compared in the figure is the staircase input (expected

from the digital computer) against the nonrealistic smooth ramp input.

Although the staircase commands do not present any problems in the servo-

valve monitor, they may cause problems in total system performance.

Figure 13 shows the effects of various ramp rates for the staircase commands

on the servo/actuator and monitor. As expected, the smaller the ramp rate,

the smaller the measured effects.

Figure 14 shows what happens when the input command is lagged. This tends

to smooth out the steps of the staircase input but at the expense of slowing

down the system if and when quick response is required.

This study did not consider engine performance since the engine and control-

ler are not included in the simulation.

Engine/Controller Frequency Response per RL00001 Revision E --

Summary -- Stability margins for the RL00001 Revision E engine/

controller were determined at selected points in the operational envelope,
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using the digital KNOVOL program. Minimum gain margins thus obtained

are 10db for the thrust loop and 18db for the MR loop. Phase margins ex-

ceed 60 deg for both loops. These values are well within the design goals of

8db gain margin and 45 deg phase margin. The gain and phase margins

obtained from this study are summarized in Table 2.

Table 2. Gain and Phase Margins

Gain Phase
Control Power Nominal Forcing Function Margin Margin

Loop Setting MR (db) (deg)

Thrust NPL 6.0 2 %(A/A)Op V Decrease 14 90

Thrust NPL 6.0 2%(A/A)OpV Increase 12 84

Thrust MPL 6.0 2%(A/I)OpV Decrease 19 90

Thrust MPL 6.0 2 %(A/A)OPV Increase 11 82

MR NPL 6.0 2%(A/I)FpV Decrease 21 90

MR NPL 6.0 2%(A/I)FPV Increase 23 85

MR MPL 6.0 2%(A/I)Fpv Decrease 25 60

MR MPL 6.0 2%(A/)FPV Increase 28 80

Thrust MPL 6. 5 0. 5%(X/X)Opv Increase 12 60

MR MPL 6.5 1%(X/)FPV Increase 21 85

Thrust NPL 6.5 1%(X/I)Opv Decrease 10 60

MR NPL 6.5 1%(X/)FPV Decrease 18 90

Thrust MPL 5. 5 0. 5%(X/X)OpV Increase 15 65

MR MPL 5. 5 1%(X/3)FpV Decrease 28 90

Thrust NPL 5. 5 l%(X/X)oPvDecrease 13 85

MR NPL 5.5 2%(X/F)FpV Decrease 25 90
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Discussion -- Two simulations were used in obtaining the above infor-

mation. The data at MR = 6.0 was obtained from the.PACE 231R/Sigma 5

simulation prior to switchover to the verification simulation on the PACE

700/Sigma 5 equipment. Data at MRs of 5. 5 and 6. 5 was then obtained from

the latter equipment.

It should be noted that the two sets of data were obtained from the simulations

using different forcing functions. The 231R (MR = 6) data has valve area

steps as the input function while the 700 (MR = 5. 5, 6. 5) data has valve

position steps as the input function. The above difference results in the open-

loop gain of the two sets of data being different by the displacement to area

gain of the propellant valves.

The controller configuration used in these studies is shown in Figure 15 and

Table 3.

Frequency Responses for MR = 6.0 (231R Data ) -- An oxidizer pre-

burner valve area step was used to force the thrust loop, and the fuel pre-

burner valve area step forced the MR loop. The loop not being forced was

closed so that the responses were of the augmented engine. Gain and phase

margins are obtained by adding the appropriate controller and engine re-

sponse plots and observing the phase angle at the point of unit (0db) loop

gain, for the phase margin, and noting the loop gain at the point where the

total phase angle is 180 deg.

Frequency Responses at MR = 6. 5 and 5. 5 (PACE 700 Data) -- This

data was obtained in a similar manner to the 231R data except displacement

rather than area steps were used. It should be noted that the phase angle

on these responses is in error by 180 deg due to a programming discrepancy.

W2101-QPR-3-73
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Table 3. Key to Figure 15, SSME Controller Assembly Block Diagram

Control Loop Thrut ContMixture Ratio Temperature Limit
Control Loop Thrust Control Control Control

Sensor: D
Type Pressure Turbine flowmeters Temperature resistance bulb

Response > 600 rad/sec >200 rad/sec first order 0. 5 sec first order

O (S/1.66 + 1)
Feedback Compensation None None (S/12.5 + 1)

Forward Loop Compensation -3 (S15 + 1) Stroke30 (S/33.3 + 1) % stroke @ Product of boxes 2 and 15:

and NPL Gain 0.45 b-sec S MR unit-sec E'/E = 105(1 + ABS(E/100)) lb/°R

Sample Rate 50 samples/sec 50 samples/sec 50 samples/sec

Output Range

t Gain Coefficient K3 K 4  None

At NPL and Above 1.0 1.0 1
At MPL and Below 0.6 0.25 ht

Linear with Thrust Level O
Between MPL and NPL

Control LimitsControlLimits 6.0 at EPL 0 Nominal reference temperatures:

Range 5. 5 - 6. 5 NPL to MPL 18951R - FPV
0C 1 MRU/sec maximum 2040*R - OPV

Rate 480 lb/msec maximum

C Crossfeed Gain K 5  None None

At NPL and Above 1. 1 % Stroke FPV
At MPL and Below 1.32 % Stroke OPV
Linear with Thrust Level
Between MPL and NPL

Valve Position Control (D Oxidizer preburner Fuel preburner oxidizer None
Oxidizer valve valve

Response 752 Stroke 752 1 Stroke

S
2 
+ 75S +75 2 Stroke S

2 
+ 75S + 752 Stroke

Error Select Logic (

Iogic selects and transmits most None See thrust error select logic
negative error signals received
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Engine Sensitivity to Preburner Propellant Valve Motion -- Current studies

at Honeywell indicate that the preburner propellant valves have an excessively

high engine control sensitivity at minimum power level (MPL). This high

sensitivity results in problems with possible premature engine failure due to

the oxygen preburner valve (OPV) and potentially poor mixture ratio control

definition due to the fuel preburner valve (FPV).

Oxygen Preburner Valve Failures --

Summary -- The studies at Honeywell on the engine system simulations

indicate that the current engine definition has a high risk of premature failure

during servoactuator malfunction. Specifically failures of the oxygen pre-

burner propellant valve (OPV) servoactuator which cause slewing in the open-

ing direction, at minimum power level, cause the oxygen preburner tempera-

ture to exceed 5000 degrees Rankine. In Figure 16, traces 1 and 4 demon-

strate the reaction of the engine to the above mentioned type of failure. The

open-loop test runs of Figure 17 point out two significant aspects of the engine

operation at minimum power level. The first is that it takes less than 2 per-

cent step in the OPV valve to cause the oxygen preburner to go above 50000 R

temperature. The second is that the deep throttling schedule requirements

of the main oxidizer valve, at low power levels, is a major contributor to

the problem.

Modifications to the engine system definition in the following areas will con-

tribute to alleviating the problem:

1) Decrease the main oxidizer valve (MOV) valve schedule; i. e.,

do not throttle the valve area to a low value during MPL

operation.

2) Reshape the OPV valve area to compensate for the high-

flow gain at MPL by decreasing the effective incremental

area change.
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3) Decrease the slew capability of the OPV valve servoactuator.

The current system has a 305%/second maximum capability.

The maximum rate needed is 150%/second during the start

range.

Discussion -- Recent servoactuator failure mode studies indicate a

potential engine system failure condition exists in the oxygen preburner sys-

tem. The apparent cause of the failure is the excessive servoactuator slew

capability and high control effectiveness, particularly at minimum power

level (MPL), of the oxide preburner propellant valve (OPV).

Referring to Figure 16, failures at low engine thrust level in the OPV valve

(1 and 4) cannot be switched out quickly enough to avoid a shutdown through

the preburner temperature engine limit parameter. More significant is the

fact that this shutdown would occur after the preburner had operated at exces-

sive temperature (above 5000 0R). The total time duration at the high tempera-

ture cannot be determined on our current simulation. The final temperature

value and slew rate are high enough to effectively place our simulations out of

range in a very short (20 to 40 milliseconds) time period. The engine shut-

down criteria requires 500 milliseconds overtemperature prior to shutdown.

Honeywell simulations currently are not set up to simulate 5000 0 R tempera-

tures for a 500-millisecond real-time operation. In any event, it is doubtful

that the engine could survive the excessive preburner temperature indicated.

Figure 17 is a set of open-loop engine data which was taken in an attempt to

bracket the magnitude of the problem. The data were generated at minimum

power level with the fuel preburner valve position fixed and the oxygen pre-

burner valve position stepped in an open-loop mode. The first two runs were

made withthe MOV valve operating from the control law schedules through a

first-order lag. The third trace was made with the MOV valve held open at

100 percent.
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The first trace indicates that the current engine definitions can tolerate a

1 percent open-loop increase in actuator position at minimum power level.

The second trace shows the oxygen preburner temperature spiking over

30000 R for a 2 percent increase in OPV valve position. Trace number three

indicates that holding the main oxide valve fully open at MPL allows the

oxygen preburner valve to step 4 percent without exceeding the 2000 0 R

nominal engine shutdown limit.

Considering a failure in the OPV actuator system with its current 300%/second

slew rate coupled with the above data indicating a 2 percent step is the upper

bound in open-loop operation of the preburner. The following monitor reaction

time can be calculated:

Required reaction time = 2%/300%/second = 6.6 milliseconds.

This reaction time of 6. 6 milliseconds is roughly 50 percent of the required

12 milliseconds needed for the operation of the fail operational solenoids, and

does not leave any time for monitor and software processing. From the above,

it is evident that at best a potential system single point failure exists and at

worst it may result in significant engine damage.

Reviewing the above data and the general characteristics of the engine and

actuator definitions, the following conclusions can be reached:

1) The main oxidizer valve throttling increases the preburner

propellant valve sensitivity by increasing the pressure drop

across the preburner valves at minimum power level.

Relief for this problem can be obtained by: a) decrease the

MOV throttling at low thrust levels; that is, do not close the

MOV valve area as far for minimum thrust; and b) decrease

the effective flow gain of the propellant valve possibly by

shaping the valve area for the low thrust engine conditions.
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2) The excessive servoactuator rates during failure conditions

coupled with the high-control effectiveness of the OPV valve

contribute to the failsafe problems. This high-rate capability

of a failed system adds significantly to the severity of the

engine disturbance during failures. A partial "fix" of the

problem may be to incorporate electronic slew limiting in the

servoamplifier. Such limiting would restrict the high slew

rates associated with RVDT and summing circuit failures but

would not cover the failures in the servosystem hydromechanical

hardware or the slew limiting electronics.

The time histories contained in Figure 16 are separated into two sets. Each

strip in a set has a number which identifies the particular failure type.

These failure types are:

1) Servovalve step hang-up, less than error action level (EAL)

of the analog monitor, positions actuator so that propellant

valve tends to open.

2) Same as 1 except that propellant valve tends to close.

3) RVDT output goes to maximum value.

4) RVDT output goes to minimum value.

The eight parameters in the set at the left, starting at the top of the figures,
are:

1 and 2 - The differential errors (DE) the analog monitor sees in

Channel A and B. This is the differential sum of the

servovalve and its model. When the sum equals or

exceeds the monitor EAL, currently set a 50 percent

of spool travel, for at least two milliseconds, the

analog monitor sends an interrupt to the computer.
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3 and 4 - The differential errors the computer generates by

comparing the computed actuator position with each

RVDT displayed position. When either of these

equals or exceeds the tracking EAL, currently set

5 percent equivalent actuator displacement, the

computer enters 200 hertz cycling to test the indi-

cated failure.

5 and 6 - Discretes that indicate completion of switchout of

faulty A channel, or recognizing (or switchout of)

faulty B channel.

7 - A discrete that indicates the completion of switchout

of a second failure and putting engine into pneumatic

shutdown.

8 - Engine thrust.

The parameters in the set at the right, starting at the top of the figures, are:

1) Preburner temperature, "fuel-side" of engine

2) Preburner temperature, "oxidizer-side" of engine

3) Shaft speed, high pressure fuel turbopump

4) Shaft speed, high pressure oxidizer turbopump

5) Main combustion chamber pressure

6) System thrust error

7) System mixture ratio error

8) Engine thrust
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Engine Control Accuracy --

Summary -- The effects of engine sensitivity to preburner propellant

valve motion and servoactuator system backlash were investigated on Honeywell

simulations. The primary purpose of these studies was to detect any self-

sustaining oscillations (limit cycles), in the engine/controller system, due to

servoactuator backlash. The studies indicate no loop induced oscillation in

the system but they also indicate that the engine sensitivity to valve motion

at minimum power level is excessively high. The conclusions of the study

are:

1) The total effective backlash of the servoactuator/propellant

valve mechanization must be less than ±0. 5 percent with the

current propellant valve area versus position definitions.

This tolerance provides no design margin for inaccuracy in

system design or description.

2) "Adequate" system design margin requires a factor of 4 to 5

reduction in engine sensitivity to preburner propellant valve

motion at minimum power level.

It should be noted that these studies do not include the addition of stiction as

specified in RL00001 Revision E, Amendment 3. This stiction will tend to

aggravate the valve sensitivity problem.

Results -- Engine sensitivity to propellant valve motion was obtained

from the hybrid simulation. Step commands of ±0. 5 MR units and ±24, 000 lbs

of thrust were used to determine the differential valve displacements required

to reach these commanded values. The sensitivities are as follows:
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Valve Power Settings Response/% Displacement

OPV NPL 12,000 lbs/% Stroke

OPV MPL 24, 000 lbs/% Stroke

FPV NPL 0. 125 MR Units/% Stroke

FPV MPL 0. 4 MR Units/% Stroke

The figures indicate a high degree of MR sensitivity to FPV movement,

especially at MPL.

Figure 18. MR Step Responses with 0. 5 percent Backlash - The

responses to MR step commands from 6. 0 to 6. 5 MRU

and back at NPL and MPL are shown in Figure 18 for

linkage backlash of 0. 5% in both MR and thrust control

loops. The error tends to hang off at 0. 05 MRU for

some time while the controller moves the linkage

across the dead zone. Specification requirements of

1% (0. 065 MRU) error within 3 seconds are met with

this backlash level.

Figure 19. MR Step Responses with 1. O0 percent Backlash - Fig-

ure 19 shows responses to MR step commands of 0. 5

MRU at NPL and MPL with linkage backlash of 1%.

There is considerable overshoot (30%) and hang off

evident in the error traces. It appears that the

specification on MR control could just be met with

this much backlash but there is little if any margin

on the time requirement.

Figure 20. MR Step Response with Reduced Valve Effectiveness -

The gain of the control valves was reduced by a factor

of 5 and the controller gains were increased by 5

maintaining constant loop gain while simulating less

sensitive valves. The results of this change are
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shown in Figure 20 where the run shown in Figure 19

was repeated but with less effective valves. The dif-

ferences in overshoot and hang off are apparent.

Figure 21. Thrust Step Response with 1 percent Backlash - Sys-

tem responses to thrust step commands of 24, 000 lbs

are shown in Figure 21 for linkage backlash valves of

1%. The spec requirement of "less than 6000 lb thrust

error within 1 second" is marginally met at NPL and

is exceeded at MPL.

Figure 22. Thrust Step Response with Reduced Valve Effectiveness -

Figure 22 is a repeat of the run made in Figure 21 except

that valve effectiveness is reduced by a factor of 5. Loop

gains are the same. The improvement in thrust response

is very evident; the thrust control loop is now well within

spec.

Discussion -- The above results indicate that the system' s ability to meet

accuracy requirements with the current valve actuator system definition is

marginal. Specifically, the fuel preburner valve has a control gain of 0. 4

mixture ratio units per percent valve travel at minimum power level. This

would require a steady state allowable motion of the valve to be less than

0. 25 percent of total travel to maintain a 0. 1 mixture ratio error band. The

current estimated deadband in the system is 0. 6 percent which means the

required steady-state position-keeping requirements of the system are less

than the uncontrollable slack in the mechanism.

In a like manner the ±6000-lb thrust precision requirement requires a steady-

state actuator resolution of 0. 5 percent if all of the allowable error tolerance

was used up by the actuating system.
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The above-noted marginal operation against specification indicates that the

engine sensitivity to propellant valve motion at minimum power level should

be reduced by a factor of at least 4 to 1. This is required to obtain adequate

design margin on system and servoactuator performance.

Please note that the above analysis and evaluation is based upon servosystem

definitions which do not include the effects of propellant valve inertias, loading

or stiction. Some relief from the above-mentioned problems may be available

if the valve loading effects are large enough to keep the actuator linkage loaded

in one direction at all times. This would minimize backlash in the system.

The gains obtained due to loading, however, may be obviated by the spring

mass system represented by the propellant valve ball inertia and associated

wrapup in the valve stem. The stiction effects relating to this particular

problem are difficult to evaluate without including the above mentioned

inertias, spring rates and valve loading.

An evaluation of the above system mechanization is beyond the scope of

Honeywell's current analysis effort.

Off-Nominal Slewing -- The analytical digital program has been updated to

include the "Tepee" MR command limiting shown below:

THRUST
EPL

NPL . I

MPLI I 0 MR Command
5.5 6.0 6.5
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Controller ramp responses at MR command levels of 5. 5 and 6. 5 are shown

in Figure 23. It appears that there is a tendency toward oscillatory response

at maximum allowable MR levels, between EPL and NPL (Figure 23B). Gain

and phase margins have not been checked at this operating point, but if fur-

ther investigation reveals low phase margin, changes in the digital controller

may be required to prevent limit cycles when linkage backlash is included in

the control loop.

Design Verification Program

The following test procedures were prepared and submitted to Rocketdyne

during the reporting period:

Title Procedure

* Printed-Wiring Board Screening (Addendum) 002-P

* Crystal Oscillator (Rev. B) 004-P

o Pulse Rate Converter (Rev. B) 009-P

* Pulse Rate Converter EMI 010-P

* On/Off Valve Driver EMI 012-P

* Servovalve Driver/RVDT Demod 013-P

* Gate Driver/Sample and Hold (Rev. B) 014-P

* Logic Sequence and Shutdown, Rev. A 015-P

• Longitudinal Vibration Channel 021-P
Electromagnetic Interference (EMI)

* Voltage Reference (I/O), Rev. A 023-P

* Servovalve Model/Spool 026-P
Demod / Comparator

* Recorder Data Converter 027-P
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Title Procedure

e Guidance and Control Data Converter 028-P

* Data Bus Interface 029-P

* D/A Converter Rev. A 031-P

* Gate Driver/Sample and Hold EMI 032-P

* Word Current Generator Rev. A 035-P

* Power Conditioner 051-P

* Strobe Timing Generator 052-P

Testing was completed on the following breadboard circuits:

* Printed wiring board screening 002-P

* Pulse rate converter 009-P

* Pulse rate converter EMI 010-P

o On/off valve driver 011-P

* Gate driver/sample and hold 014-P

* Low-level multiplexer and amplifier 016-P

o LVDT power supply/demod driver 019-P

o Longitudinal vibration monitor 020-P

* Voltage reference (I/O) 023-P

• Recorder converter 027-P

* Guidance and control (G&C) converter 028-P

* Data bus interface 029-P

* 30 foot cable drive 034-P

* Structural test section, thermal 036-P
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Testing was also started and was in process at the end of the period:

o Servovalve driver RVDT 013-P

* Servovalve modulator/spool 026-P

demodulator /comparator

* EEE piece parts thermal* 103-P

* EEE piece parts vibration* 104-P

No new tests to be initiated, existing tests to be completed.

The following test reports were submitted:

Transmittal
Report Test Procedure TransmittalLetter

AEX-73-147 Logic Sequence and Shutdown 015-P 06-771-73

AEX-73-031 Igniter Monitor 018-P 07-902-73

DVS TR 001 30 Foot Cable Drive 034-P 07-868-73

AEX-73-034 Low-Level Multiplexer and 016-P 07-928-73
Amplifier

AEX-73-027 Radial Vibration Channel 022-P 07-913-73

AEX-73-047 Data Bus Interface (68-Ohm 029-P 08.-932-73
Cable)

AEX-73-042 Pulse Rate Converter (Rev. A) 009-P 09-1037-73

AEX-73-038 Input Electronics Reference 023-P 08-999-73
Power Supply

AEX-73-033 Gate Driver/Sample and Hold 014-P 08-1000-73

AEX-73-040 LVDT Power Supply/ 019-P 08-1013-73
Demodulator Driver

AEX-73-066 Guidance and Control (G&C) 028-P 09-1077-73
Converter

AEX-73-048 Structural Test Thermal 036-P 09-1034-73
Section
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HARDWARE DESIGN

Computer Interface Electronics (CIE)

All computer interface electronics circuit design effort has been completed.

Effort remaining includes supporting drafting in the preparation of the last

printed wiring board drawings, completing the engineering model and pro-

duction prototype model documentation, and supporting system testing.

Two sets of engineering model CIE cards, one set for EM-1 and the other

for BT-1, were built and evaluated against their card ESs. In addition, one

set of cards, for EM-1, was further evaluated as a complete functional sub-

assembly, interfaced with the two engineering model digital computers, and

subsequently put into full system functional testing (see Engineering Model).

One half of the second set of cards, for BT-1, have been evaluated as a

nonredundant functional subassembly and also were interfaced with the

digital computer of EM-1. No problems were encountered. The remaining

half set will be evaluated in September.

Seven of the eight data packages for the production prototype CIE printed

wiring board designs have been released. The release of the eighth printed

wiring board data package, representing two of the 15 boards used in the

controller, is scheduled for mid-September.

A 68-ohm data bus study was performed. The results of this study showed

that the current design (150 ohm) can be modified to the 68-ohm configurations

and still maintain a minimum of 5 volts at the receiving end of a 250-foot

section of transmission line (transmission line supplied by Rocketdyne).

Honeywell has been given direction to incorporate the 68-ohm data bus.
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Input Electronics

During the reporting period the release of all documentation pertaining to the

build and test of the Engineering Model (EM-1) cards and subassembly was

completed. Similar documentation for PP-I system is in process of release.

A major effort during this period was the support of EM-1 card and subsystem

testing and analysis of the results. Design changes were initiated where

analysis indicated they were necessary.

Low-Level Analog Input Channel -- A single-point failure mode causing two

sets of input data to be lost was discovered in the temperature and pressure

multiplexing circuits. A shorted multiplex switch in the Channel C input

would cause loss of both the Channel C input data and either the Channel A

or Channel B data in which the Channel C data were being processed.

To correct this situation, Channel C multiplex switches were connected in

series with the appropriate Channel A or Channel B switches, requiring two

failures before loss of two input data lines would be experienced. DCU out-

put control pulses are used to verify capability of both switches to open and

close.

At the request of Rocketdyne, this change was incorporated in the DVS

breadboard and the procedure revised. DVS tests on this circuit were com-

pleted during this quarter and reports submitted. Test results were

satisfactory.

Pulse Rate Converter -- The DVS test of the pulse rate converter circuit

and an EMI DVS test on this circuit were completed during this quarter.

Test reports were transmitted to Rocketdyne.

System tests on the EM-1 Controller indicated that noise present on long

input lines is detrimental to the operation of this circuit. As a fix, a small

capacitor (0. 01 jf) was added across the input of each converter circuit.

This fix will also be incorporated into the production (PPl) configuration.
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A/D Converter -- Development testing of the analog-to-digital (A/D) converter

breadboard is complete. The "speedup" fixes have been incorporated into

the design and the circuit meets the Honeywell-specified maximum conversion

time requirement.

Comments to the DVS procedure were received from Rocketdyne. A revised

procedure was resubmitted. Design verification testing will begin as soon as

the DVS is approved.

Vibration Electronics --

Radial Vibration Monitor -- Design and development of this circuit is

complete. Changes indicated necessary by the results of DVS tests completed

in the previous quarter have been incorporated in the Engineering and Produc-

tion designs.

Longitudinal Vibration Monitor -- Design and development is complete

following successful completion of DVS tests. The test report is written and

will be submitted to Rocketdyne within 2 weeks.

Two changes to RC1007 received from Rocketdyne (SCN 032 and SCN 033)

adequately define corner frequencies and tests to be performed during ground

checkout.

Input/Output Reference Power Supply -- DVS tests on this circuit were com-

pleted during this quarter.

An acceptable method to eliminate the absolute references in the input elec-

tronics was found and incorporated into the design. This design change has

no effect on the validity of the DVS tests completed.
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Crystal Oscillator Design -- Developmental tests on the two crystal oscillator

designs were completed. One circuit displayed a superior starting charac-

teristic and was selected for use throughout the controller. A schematic of

the circuit selected is shown in Figure 24.

1000pf

SN SI0 E (SQUARE WAVE)

464 ( 464

Y1
r---i

Y1 - - CRYSTAL, 12.000 MHz +70 PPM OVER A TEMPERATURE

RANGE OF -550 TO +105 0C

Figure 24. Preferred Crystal Oscillator Circuit

Output Electronics

During this reporting period the release of all documentation pertaining to

the build and test of the Engineering Model (EM-1) cards and subassembly

was completed. Similar documentation for the PP-1 system is in process

of release.

The major effort during this reporting period was the support of EM-1 card

and subsystem testing and analysis of the results. Design changes were

implemented where analysis indicated they were necessary.
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On/Off Valve Driver -- DVS testing of this building block was completed.

All test requirements were met except that the pneumatic valve holding cur-

rent was approximately 0. 79 amp at high temperature instead of 0.75 amp.

This occurred when the energizing voltage was 39. 6 volts. The nominal

voltage is 36. 0 vdc. It is presently planned that this will be discussed during

the 19 September coordination meeting.

Igniter Power Regulator -- The decision was made to include this circuit

within the controller power supply electronics.

Servovalve Driver/RVDT Demod -- DVS testing of this building block is in

process and results to date appear satisfactory.

Servovalve Model/Spool Demod/Comparator -- DVS testing of this building

block is also underway and progressing satisfactorily.

LVDT Power Supply -- DVS testing of the LVDT power supply was completed

with satisfactory results.

D/A Converter -- A revised DVS test procedure was submitted incorporating

comments received from Rocketdyne. DVS testing will start as soon as the

revised procedure is approved.

Power Supply Electronics

In-depth electrical testing of the breadboard model of the power supply elec-

tronics (PSE) was conducted during this report period.

Closed-loop operation of the pulse width modulator for the voltage regulator

control loop was satisfactorily demonstrated. Transient response testing

of the primary (+5 volt dc) regulated output voltage of the power supply

showed quick recovery and a well-behaved response for step changes in the

load impedances.
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A number of improvements and design simplifications were accomplished as

a result of the PSE breadboard testing. These improvements include:

o Optimization of the speed of response to transients by

means of a simplified voltage feedback and control loop.

* Elimination of the filter inductor in the d-c power input

path. Less than 5-volt peak-to-peak ripple is present on

the 267-vdc output when it is derived from a 3-phase a-c

full-wave bridge rectifier and filtered by a 20-p.f capacitor.

* Demonstration of the ability of transistor base circuit

charge control to provide instantaneous and rapid turn off

of the dc/ac converter power transistors with and without

collector current loading. This was a major design goal

for proper power-up and operation of the power supply.

* Power transformer design improvements derived from

magnetic parameter testing and aimed at keeping the power

transistors' (dynamic) operating load lines (collector voltage

versus collector currents) within the safe instantaneous

values as delineated by the power transistor manufacturer.

* Reduction in the number of integration inductors from 2 to 1

in the +5 volt regulated output for each channel. This simpli-

fication in the integrator design resulted in a weight reduction

of 4.0 lb and a volume recovery of 30 cubic inches.

PSE Block Diagram -- A partial PSE simplified block diagram is shown in

Figure 25. The design simplifications reported above are included in this

updated block diagram.
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Power Supply Packaging Status -- A prototype power supply heat sink and

housing assembly for the PSE channel has been fabricated in the Tech Lab.

This engineering model prototype power supply will verify the mechanical,

thermal, magnetic and electrical characteristics of the production design.

It will also be used for EMI development and DVS testing.

Engineering Model (EM)

Primary emphasis during this period was concentrated on EM-1 and BT-1

fabrication and EM-1 evaluation. A third chassis, EM-1A, scheduled for

nonredundant engineering model checkout, was eliminated to reduce costs.

The EM-i controller has been in system test since early August although it

has not been completed in two areas. The main power supply has been sub-

stituted with commercial power supplies as the main power supply develop-

ment is lagging the remaining portions of the system. The power supply is

scheduled to be available in November. Also not completed is the wiring to

the four controller GSE connectors as there was a change in connector types

and new connectors were ordered. The GSE connector wiring is scheduled

for completion in September. The 43 stitch wiring cards and two metal

boards containing the input, computer interface, and output electronics cir-

cuits will be upgraded as the long lead time precision components (resistors

+ capacitors) become available.

The system functional test phase is on schedule and no major design deficien-

cies have been uncovered.

Figure 26 shows the EM-1 controller. The BT-1 controller will be identical

to EM-1.
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The BT-1 controller is scheduled for system test in November - less the

main power supply and one of the two digital computer units. The BT-1

cabinet has been completed with the exception of the four GSE connector

wiring, and has been used as a test bed for both EM-1 and BT-1 cards. All

but five BT-1 stitch wiring cards have been fabricated and evaluated against

their card documentation. The remaining five are waiting for parts.

BT-1 functional subassembly testing is progressing; the nonredundant CIE

functional subassembly testing has been completed (eight cards). The

remaining CIE functional subassembly testing will be completed in September.

Output electronics and input electronics functional subassembly testing will

be completed in October. The main power supply will be available for BT-1

in mid-December.

Simulation Interface Adapter (SIA)

The SIA signal conditions all controller input and output signals, with the

exception of the data bus, for use in Honeywell's hybrid computer facility.

All the circuits providing this signal conditioning are housed in a single

cabinet, Figure 27.

The SIA is in test where it is being verified against its specifications -- all

components being previously checked out and calibrated. This verification

will be complete on 1 October at which time it will be available for system

test.
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Controller Mechanical Design

An overview of the controller mechanical design was presented to the Honey-

well Design Review Committee. A design critique was obtained from the

committee and a Design Review Report is being prepared.

The structural thermal model (STM) case walls and covers shown in Figures

28 and 29 were tooled, machined, and successfully processed through inspec-

tion. The STM configuration incorporates the reduced number (from 6 to 4)

of ground support equipment connectors, relocation of the J-12 power connec-

tor from the outboard cover to the end wall adjacent to J-7 and J-8, and the

revised flange bolt pattern. All piece parts for the STM were also completed

and subassembly work was started. A potential problem is the delay in

delivery of circuit board connectors and master interconnect board (MIB)

contacts.

Drawings for five PP-1 printed-wiring board assemblies were completed and

released for procurement. PP-I MIB piece-part drawings were also released

and fabrication was started. The MIB assembly drawings are nearly complete

and are dependent upon the internal cabling design. Cabling layout was slowed

due to the limited space in the outboard-to-inboard case interface.

Fabrication was completed on the mold for the foam grid to be used in the

foam-pack assemblies, and pilot molding was begun. A test foam-pack

assembly is shown in Figures 30 and 31.
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Figure 30. Circuit Board and Grids
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Digital Computer Unit

Memory Timing -- Memory timing and control required additional buffering

and was accomplished with two additional circuits. This required 11 addi-

tional 4. 7 .fd capacitors to reduce decoupling noise from 90 my to 75 my

on the 10. 7-vdc line and also accept a 2. 6-amp digit load. The impact on

the power conditioner requirement of meeting a 2 ms operating level after

turn-on was acceptable as defined for nominal case.

Power Conditioner -- A design change was incorporated into the power con-

ditioner logic to assure a minimum of 1 ms delay after PRIO interrupt before

the 5-vdc supply was back within operating parameters.

The power regulators +10. 7 vdc, +8. 0 vdc were breadboarded and tested

over the worst-case operational limits and perform well within specifica-

tions. The use of Vishay resistors in the power conditioner board was pre-

sented to NASA/Rocketdyne on 26 August 1973. It was necessary to establish

the need for these precision resistors and obtain concurrence that Vishay

would be acknowledged as the source for these components. General satis-

faction was expressed and followup was required to incorporate additional

requirements into the procurement specification as specified by GAPD.

Master Interconnect Board -- A specification was issued to GAPD defining

the mechanical and electrical interface requirements for the DCU. Extensive

interface was necessary between GAPD/Aero to resolve the power bus for

design to assure minimum EMI interference. Power and ground pins from

the power buses were arranged such that all electronics board assembly con-

nectors receive power through identical pin numbers to facilitate maintain-

ability, testing and troubleshooting.

Software Design -- The acceptance test program for the DCU, DS24530-01

Part I, was submitted last quarter to R/D. The Part II specification
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preliminary issue was submitted to GAPD and R/D on i4 August. Preliminary

flow diagrams were included. Final copy is scheduled to GAPD on 20 Septem-

ber with final listings to be delivered 1 December 1973.

Documentation Release -- Approximately 80 percent of the DCU documenta-

tion is released. The major subassembly drawings and four printed wiring

board artwork details are yet to be released. A target for all released hard-

ware documentation is planned by mid-October.

Five of the seven central processor board artworks are released. The timing

and control processor board is planned for release on 26 September. This

will complete the processor hardware drawing set.

Memory subsystem documentation released includes the memory plane art-

work, substrate drawings, memory board assembly drawings, word electronic

artwork and memory sense/digit artwork. The remaining three boards will

be released in mid-September.

Power conditioner board design artwork release slipped because of a design

change in voltage sequencing requirements. A minimum impact to artwork

is anticipated and expected release date is 30 September 1973. This board

does not impact unit delivery schedule.

Hardware design definition on foam packs is in final stages. Information

will be submitted to GAPD for use in hardware design and build.

MIB interface drawings are completed and information transmitted in a

requirement specification to GAPD.
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GSE/FTE DESIGN

The Preliminary Design Review (PDR), with Rocketdyne and NASA repre-

sentatives in attendance, was completed on July 31-August 1, 1973. Agree-

ment was reached regarding all GSE requirements and implementation.

Since the PDR, the GSE/FTE design effort has proceeded in all areas, and

activity is shifting from design and drafting to support of part procurement,

fabrication, assembly, and checkout. The design status for each end item

is summarized below and the hardware build status is presented in Sec-

tion III.

Command and Data Simulator (C&DS)

The C&DS hardware detailed design is basically completed and the engineering

drawings are nearing completion. DS24682-01 has been updated to incorporate

the changes agreed upon at PDR. Executive software programming is cur-

rently underway with several sections coded and assembled. Debug of the

executive sections or routines is being accomplished on alternate work shifts

with the hardware checkout on the in-house C&DS.

The initial goal is to have the executive software sufficiently complete and

debugged to render the in-house C&DS usable for system integration tests

with the EM-1 controller model on 1 October 1973.

Controller Memory Programmer

All work has been suspended in compliance with Rocketdyne Stop-Work

order RDM-CA3-400 dated August 29, 1973. At that time, the DVS test

on the 30-foot interface cable had been successfully completed, the detail

design was nearing completion and a major portion of the piece parts for

the Programmer had been ordered.
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Controller Checkout Console (CCC)

The initial hardware design is completed and minor revisions are being

incorporated as a result of debug tests being performed on the controller

acceptance test procedure (ATP).

Factory Test Equipment (FTE)

The FTE design is proceeding as required to support production of the PP-i

controller and beyond. Designs of the manual card station, card burn-in

station, and the controller adapter have progressed significantly and manu-

facturing is in process. The controller adapter design is being kept current

with the performance experience derived from checkout of the first CCC and

the preliminary controller ATP.

The subassembly adapter design is partially complete with current effort

concentrating on the master interconnect board (MIB) holding fixture. The final

electrical interface design will be completed upon release of the MIB

wiring tests.

The interconnect cables required to interface the in-board and out-board

master interconnect boards (MIBs) of the controller to the Production DIT-

MCO machine have been defined and are on order. The DIT-MCO machine

is a capital piece of equipment which will be used to perform continuity and
insulation resistance checks on the complete stitch-wired MIBs.

Design of the card test software and adapters is proceeding in accordance

with the card engineering data releases and production schedules for the

PP-1 controller. The adapters are required to interface each card to

either the manual card station or to the ATE station.
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SOFTWARE DESIGN

Memory Size and Process Time

The memory size and process time estimates for the operational program

were revised, based on the detail flow charts provided in the operational

program engineering specifications (ES 24622 dash numbers 01 through 11).

The revised estimates for the flight program and checkout modules are:

Function Memory Process Time

Flight Program 10,314 words 16.56 milliseconds

Flight Readiness Test Module 575 words 1.776 milliseconds

Actuator Component Checkout 955 words
Module

Pneumatic Component Checkout 435 words **
Module

Sensor Checkout Module 785 words **

Redundancy Verification Module 350 words **

TOTALS 11,269(1) words 18. 34 milliseconds

(1)Worst case with actuator component checkout module in memory.

** Not used during mainstage control.

The process time estimate exceeds the specification limit of 15. 4 msec.

However, this problem does not require immediate resolution. The estimates

are based on a software design which is optimized for minimum memory. A

review of this design will be made in the next quarter to seek more efficient

algorithms and to determine if more conservative use of subroutines would

decrease the process time. Honeywell will also review the self-test require-

ments to assure that all identified tests are required every major cycle.
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Honeywell will identify requirements which are process time drivers and

work with Rocketdyne to determine if changes can be made to reduce the

process time. Finally, if more efficient programming and requirements

modifications do not alleviate the problem, Honeywell analysis has shown

that the cycle time could be increased to 25 or 30 milliseconds. However,

a change in the cycle time is not recommended at the present time. A

history of the memory size and process time is shown in Figures 32 and 33.

Operational Program Requirements

Revision B to the Operational Program Part 1 specification, based on

RC 1010C Amendment 2 requirements, was released. This specification

was transmitted to Rocketdyne for review and comments via Honeywell

Letter No. 7-852-73.

Revision C to the Operational Program Part 1 specification is 50 percent

complete. This revision will reflect RC 1010D. The completion date for

this specification is being slipped to accomplish high-priority tasks. The

expected completion date is now late November.

Operational Program Design

A complete baseline design in the form of 11 engineering specifications

(ES 24622 dash numbers 01 through 11) has been released. Each of these

specifications contains a description of a computer program component

(CPC) in terms of data descriptions, flow charts, and subroutine descriptions.

Information copies of released specifications are sent to Rocketdyne per

DR 55-E-024.
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Controller Acceptance Test (CATP)
Program Requirements

The CATP Part 1 specification was released and sent to Rocketdyne for

approval per DR 55-C-009.

Controller Acceptance Test Program Design

The CATP Part 2 and Addendum specifications are 50 percent complete.

With the release of the CATP Part 1, these specifications can be completed

and will be sent to Rocketdyne in accordance with a schedule coordinated

with Rocketdyne personnel.

The CATP Program is 80 percent coded and is being debugged on the 516

and engineering model controller. Debug is 30 percent complete.

Computer Acceptance Test Program (CMTP)

A preliminary Part 2 specification for the CMTP was transmitted to

Rocketdyne via CEL 3-SSEC-230.

Rocketdyne and Honeywell have resolved most of the points in question on

the CMTP Part 1 specification. This document will be revised to incorporate

the agreed changes during the next quarter.

The CMTP code has been updated to incorporate a parity test, improved

memory pattern tests, and the input/output tests. The program is 90 per-

cent coded and debugged.
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SECTION III

MANUFACTURING

CONTROLLER

Activation Schedule

The milestone and activation schedule (Figure 34) has been updated to reflect

the impact of delayed Input/Output Assembly printed circuit card releases

(-7 weeks) and delayed DCU deliveries (-10 weeks). This implies a corre-

sponding delay in PP-1 delivery which must be dealt with insofar as possible

with work-around and schedule recovery techniques.

Tentative layouts for the production areas have been made and approval for

funding the St. Louis Park facility has been requested. 1973 capital equipment

requests have been submitted for approval. Vendor tooling and card tool

ordering has started and will continue as design definition and print releases

progress. Approval of all special-purpose tooling items in excess of $1, 000

each is being requested from Rocketdyne as the individual tools become

identified. Training of Shuttle personnel for hi-rel handling has started.

Production Control/Flow Charts

The line-of-balance chart (Figure 35) for fabricating the PP-1 model identi-

fies the parallel time phase relationships for chassis, card assemblies,
DCU, and controller assembly. Material orders are being placed as defini-

tion is received from Design Engineering. The chart reflects the current

status including the projected impact of the delayed printed circuit card

releases.
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1973 1974

ITEM A I 
MIA MIJ J A S I N

______- - - -.- -- - - 4

COST ANALYSIS

DESIGN SUPPORT

CUSTOMER SUPPORT

BILL-OF-MATERIAL A, 2 3-
PRICING UPDATE

START ORDERING
LONG LEAD PARTS

INITIATE TOOLING
AUTHORIZATION

START ORDERING
OTHER MATERIAL --- A

INITIATE PROCESS
SUMMARIES

START ORDER PC CARDS -- --- - - - -

ORDER MASTER
INTERCONNECT BOARD

COMPLETE ORDERING OF
ELECTRICAL MATERIAL

COMPLETE ORDERING OF
MECHANICAL PARTS -- ".---.--

TOOLING AUTHORIZATION
APPROVED

START CARD TOOLING A
START ORDERING
VENDOR TOOLING A
START CHASSIS
FABRICATION A

S.C. STITCH-WIRE
MASTER INTERCONNECT -A
BOARD

START TRANSFORMER
ASSEMBLY

START CARD ASSEMBLY I .

LEGEND

A 2 = SECOND ITERATION TIME NOW

A 3 = THIRD ITERATION
A = COMPLETE
"' STATUS

Figure 34. Combined Milestone Chart for Activation Schedule
for Delivery of PP-1 Model
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Milestone Chart

The milestones in the previous report for the June 1973 through September

1973 period identifying material pricing updates, material ordering, tooling,

and process development were updated to reflect the current impact of

delays in printed circuit card releases.

Continuing Design support and Customer support by Manufacturing personnel

is shown by continuous bars. All Design and Customer requests for cost

estimates were completed. Production supported Design in the development

and packaging process. Manufacturing inputs to the Management Information

and Reporting System reflecting current financial expenditure plans were

updated. Production Engineering investigation of soldering techniques con-

tinued. Fabrication of the chassis for PP-1 and two EM controller assem-

blies has started.

The milestones for the September 1973 through January 1974 period will

require continuing Design and Customer support from Production. The

third cost analysis of the currently-designed controller assembly config-

uration was completed in July. Material ordering will continue as planned.

Development of processes and tooling is planned for the June through January

period.

DIGITAL COMPUTER UNIT

Activation Schedule

The milestones and activation schedule are still addressed to delivery of

PP-1 unit on 1 March 1974. A delay in delivery of 10 weeks is forecast

and the subsystem integration and testing will be impacted by the delay.

Procurement activity and multishift operation are those areas being exer-

cised to reduce the delays.
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Engineering Model EM-1 channel A and B were produced and delivered

during this quarter. BT-1 channel A is scheduled for delivery 1 September

1973, however, the current schedule indicates delivery on 28 September.

Parts procurement for three prototype units is placed and those EEE parts

with long-lead procurement are being identified with deviation request to

meet the delivery schedule.

Special-purpose testing authorization was granted for the General Radio

logic board tester and the unit was procured and delivered on 20 August to

Aero.

SEM parts have been authorized for the six production units and orders

are in process.

Production

Production control schedules are in the process of being prepared from

an overall master schedule into sublevel detail flow charts.

PP-I build activity includes receipt of memory planes and substrates from

the printed wire board supplier. The memory planes have been processed

through keeper plating and the first lot yielded 100 percent (6 out of 6) to

stock. Keeper plating has been a low yield process on past programs and the

success to date on Shuttle is attributed to a smaller physical size of memory

plane.

Board lamination will begin the end of September and half stack assembly is

scheduled to start toward the end of October.
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Flex cables are expected from the supplier in mid September with a probable

delay in connectors for the flex cables from Cinch. An interim flex cable

connector is being negotiated with Cinch that appears to be a favorable work

around.

The connectors for the printed wiring circuit boards that plug into the MIB

are on order with Cinch. Tooling estimates for these connectors plus fabri-

cation are approximating 20 weeks delivery. This places the connector

need date approximately 2 weeks beyond receipt of the first board. However,

populating the board with components will utilize the time span and con-

nectors can be assembled at the final station.

Part procurement from specific vendors present problems. Request for

deviations have been submitted on 3 components and an additional 5 devia-

tions are in process because of exceptions taken to specifications or exces-

sive lead times that are projected beyond subassembly need dates.

A joint effort including personnel from NASA/Rocketdyne and Honeywell

plan to visit Motorola to expedite delivery on sense amplifiers. Hi-Rel

and SEM units are quoted at 50 weeks plus.

GSE. FTE

The first controller checkout console (CCC), shown in Figure 36, is com-

pleted and operational, except for the computer control unit (CCU) and

the paper tape reader (PTR). The CCC has been used for checkout of

EM-1 and BT-1 controller subassemblies and currently is being employed

in system integration and checkout of EM-1. Revision's resulting from

initial use of this CCC will be incorporated in all CCC's.
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The second CCC has been assembled and checkout started. This unit is

scheduled for use with the BT-1 controller and will be the unit that is

eventually shipped to Rocketdyne.

The in-house command and data simulator (C&DS) shown in Figure 37 is

assembled and an expedited effort is under way to complete checkout prior

to the functional system completion date of 1 October 1973. Self-test software

routines are being debugged simultaneously with the system hardware.

Production effort has started on the first deliverable C&DS. The unit to be

delivered to Rocketdyne for use with the BT-1 controller is to be assembled

and ready for hardware checkout by 1 December 1973.

Several items of FTE are in various stages of completion in accordance

with their need in support of PP-1 production. Fabrication is in process for

the controller adaptor which will be used to interface the production con-

troller to the automated test equipment (ATE) for final checkout. The

manual card station and card burn-in station are in assembly and will

begin checkout by 1 October and 1 November 1973, respectively.

Two automatic test equipment (ATE) stations are being provided through

capital funding for use by Controller Production. The first station (#8) is

fully operational and the second (49) is nearing completion of the digital inter-

face unit checkout. The second station will then be upgraded with additional

peripheral equipment which will enable it to function as a stand-alone station

for use at the Stinson-Ridgway Plant. The stand-alone capability will enable

this station to be used in final checkout of controllers independent of the

central ATE system located in the St. Louis Park Plant.
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SECTION IV

QUALITY ASSURANCE

CONTROLLER

Accomplishments

Quality operating procedures, per DR 55-P-005, were submitted to Rocket-

dyne on 30 June 1973.

Inspection instructions for electronic parts were 90 percent completed

during this period and will be ready as procured parts reach receiving

inspection for the first buy for three units (PP1-PP2-NASA 1). The peak

for receipts is expected about mid-October.

EM-1 card build and functional check is complete. BT-1 card build is com-

plete and functional check is 90 percent complete.

QA participated in design reviews in the following areas:

* Input electronics

* Output electronics

* Computer interface electronics

* Mechanical design

o Power supply (50 percent)

QA also monitored the design verification testing reported in Section II.

Eight failures were recorded during these tests. Five have been closed out,

and the remainder are under investigation.

W2101-QPR-3-73



- 98 -

The quarterly QA audit of Aero, Florida, quality system capability was

performed in August by GAP QA personnel and no discrepancies were noted.

Precap visual on semiconductors was monitored on approximately 50 per-

cent of orders, mostly at T. I. where Honeywell has a temporary quality

representative assigned.

Requisitions were coded for quality requirements and orders were placed

for machining of chassis and covers for the production prototype models.

SIGNIFICANT PROBLEMS

A serious problem is anticipated in turn-around time for requests for

deviation. The Honeywell understanding is that it may take 60 days, or

longer, for the deviation request to be processed through Rocketdyne and

NASA. Since this kind of delay will impact schedules it is to the interest

of all concerned to plan ways of accelerating approval. This will be on

the agenda for the September coordination meetings at Minneapolis.

HARDWARE, PROCESS, AND PROCUREMENT PLANS

Inspection instructions for board visual and functional checks on production

prototype models will begin in September. This will include review and

sign-off by QA of production layouts in order to insert quality check points

where desired in the production operational sequences.

Post-award surveys of suppliers will be completed during the last quarter

to bring Honeywell up to date on "EEE" vendor surveys, as required by the

approved Quality Program Plan.
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Additional quality operating procedures will be generated in the areas of:

* Control of GSE build and test

* Software control

* Acceptance data package

DIGITAL COMPUTER UNIT

Engineering Model EM-1 channels A and B were subjected to acceptance

testing, and malfunctions and/or discrepant action was identified, reported

and analyzed. The complete data package was shipped with the units to

Minneapolis, as well as copies to the Quality Rocketdyne representative at

Aero.

In-house audits were performed by Rocketdyne Quality personnel. Several

discrepancies were observed, and changes in the procedures are being

incorporated.
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SECTION V

RELIABILITY

CONTROLLER

Test Monitoring

During design verification testing the following four malfunctions occurred

in the pulse rate converter and were satisfactorily closed out : 1) a test

instrumentation problem, resulting in an erroneous reading; 2) failure of an

off-the-shelf part that is not representative of the parts that will be used

in production models; 3) excessively tight specification tolerances which

were relieved with Rocketdyne approval; 4) a high conducted EMI for which

an adequate suppression circuit was devised.

Additional malfunctions occurred during DVS tests still in process. These

are summarized under "Nonconformance Reporting. "

Design Reviews

A schedule was defined for conducting the Honeywell internal design reviews,

and with the exception of the power supply and systems reviews, which have

been rescheduled, the reviews proceeded as planned. Status of the six

reviews is as follows:

* Computer interface electronics: Complete

e Input electronics: Complete

e Output electronics: Complete
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* Power supply electronics: 40 percent complete; critique
meetings yet to take place.

o System design: Board members selected, dates established

e Mechanical design: 95 percent complete; definition of action
items required to finish.

The results of these reviews will be reported per Data Requirement 55-R-007.

FMECA

The Controller FMECA Report (Document W2101-FMECA-2) was updated

and submitted. Major update was required for.all analysis worksheets

because of design changes or because of better design definition. About

60 percent of worksheets were completely revised at this time.

The functional element level Failure Mode and Effects Analysis (FMEA)

effort is continuing. The major objective of the initial phase of this FMEA

is to identify potential design problems (single failure points, etc. ). This

phase is better than 50 percent complete.

The overall progress is as follows for all major functional components of

the controller:

e Computer interface electronics - Continuing, about 30 per-

cent complete

* Output electronics - Continuing

* Input electronics - Continuing

o Power supply electronics - Started

* Digital computer unit - Continuing
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The results of the DCU analysis were periodically reviewed to support the

evaluation of the DCU self-test program (sample problem).

The functional element FMEA task was audited by representatives from both

NASA and Rocketdyne. The FMEA work done was found to be satisfactory

by both parties.

The FMECA for the GSE was initiated, and a preliminary report was issued

on 31 July 1973. The PDR for the GSE was held at Honeywell GAPD 31 July

1973 and 1 August 1973, and was supported by Reliability. The GSE FMECA

was made available for review at the GSE PDR.

Nonconformance Reporting

Twenty malfunctions reqi iring nonconformance reporting occurred during

the reporting period (including the four described under "Test Monitoring").

The cumulative status of nonconformance reporting is as follows:

* Cumulative number of reports issued - 21

* Current number of reports open - 9

Parts Management

Tests were completed on bare Vishay resistor elements with no failures.

Results were listed in Vishay Analysis Test Report No. 61370 which was

given to Rocketdyne and NASA personnel at Vishay the week of July 30.

As a result of the meeting at Vishay, Honeywell marked up prints to reflect

certain agreed to changes, and these, with test data, were sent to NASA

and Rocketdyne for review. Subsequent conversation with NASA personnel

reflected their wants for additional requirements and tests. These items

have not been resolved.
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GAP reviewed comments to "Non-Preferred Part Specifications" which

were received from Rocketdyne and NASA. In addition, comments to 33

Aero specifications were forwarded to Aero for their review. We have

scheduled a combined NASA/Rocketdyne/Honeywell spec negotiation session

at GAP the week of 17 September, and at Aero the week of 24 September.

It is anticipated that all part specification differences will be resolved and

the specifications approved.

A vendor negotiation team consisting of personnel from Honeywell, Rocketdyne

and NASA was formed and the major integrated circuit vendors were visited

during the time frame between 27 August and 14 September. Preliminary

results indicate that, with certain spec changes which NASA has agreed to

and with the possibility of being allowed to purchase in larger quantities,

a considerable cost saving can be achieved. Final results will depend on

NASA approval in both areas.

Reliability inputs were completed for all Part Application Reviews except

for the Power Supply and for minor corrections and updates on several others.

Schedule

Reliability activities are running from 3 to 4 weeks behind the planned

schedule. Functional level FMECA activity has been impeded by delays in

parts releases and by the necessity to respond to a Rocketdyne request

for a updated output level FMECA report.

DIGITAL COMPUTER UNIT

FMECA activity is in progress and is reviewed on a monthly basis with

GAP. Both DCU and GSE analysis are in process. A specific area of
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concern is to identify a positive check as to which of the two channels in

the DCU is being loaded by the programmer during operation. An action

item at the GSE PDR was assigned to Design to resolve the problem.

Test program (software) for the Engineering Model hardware were placed

under a system of control with primary responsibility to Quality Assurance.
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SECTION VI

MAINTAINABILITY

The design of the controller assembly advanced sufficiently during this

period to permit the completion of the preliminary Maintainability Analysis

and Prediction Report.

MAINTAINABILITY ANALYSIS AND PREDICTION

The preliminary Maintainability and Analysis Prediction Report (DR 55-R-004)

was completed and formally distributed on 15 June 1973.

MAINTAINABILITY VERIFICATION

Some preliminary planning for this task was performed in conjunction with

the preparation of the maintainability analysis and prediction report.

SUPPORT HARDWARE RECOMMENDATIONS

A protective cover for the flange surfaces of each half of the controller was

recommended for use during shipping and handling as separated halves. The

requirements for tools to assemble and disassemble the controller in the

factory were set forth.
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SECTION VII

SYSTEM SAFETY

GENERAL STATUS

Safety monitoring of the controller and GSE designs continued, and the

assembly area for this equipment was given a thorough safety inspection,

with the imposition of safety housekeeping controls.

QUANTITY OF CATASTROPHIC OR CRITICAL
HAZARDOUS CONDITIONS

No catastrophic or critical hazards exist at this stage of the investigation.

HAZARDOUS CONDITION SUMMARY

All items previously listed as "Critical" in the Preliminary Hazard Analysis

have been reduced to a "Controlled" status. Four items not given a

criticality assessment are still being investigated.

ACCIDENT /INCIDENT REVIEW

No accidents or incidents occurred.
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SYSTEM SAFETY HAZARDS ANALYSES

Four items listed in the Preliminary Hazard Analysis as critical were

investigated further, and reduced to a "Controlled" status. Three items

listed as being under investigation were further identified as being

"Controlled" conditions.

SYSTEM SAFETY PLAN

Revision 4 to the System Safety Plan was issued 30 June 1973.

DESIGN REVIEWS

An informal safety design review was held with Rocketdyne at Honeywell-

GAPD on 27 June 1973.

CHANGES WITH SAFETY-RELATED IMPACT

ROM for safety portion of controller "Shutdown Inhibit" modification was

sent to Rocketdyne. The proposed logic change to memory programmer

designed to prevent loading of DCU-1 program into DCU-2, and vice-versa

was reviewed and approved.
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